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Abstract. A preliminary hyperbolic model is used to describe the transport phenomena in an environment representing an 
atmosphere containing a pollutant, in which the atmosphere is modeled as an ideal polytropic gas, the is pollutant transported 
radially and the rate of pollutant production or destruction due to chemical reactions is accounted for. The resulting mathematical 
description consists of a nonlinear hyperbolic system of three partial differential equations representing mass and momentum 
conservation for the air-pollutant mixture and the pollutant mass balance. This system simulation is performed by combining 
Glimm’s scheme (whose implementation requires the solution of a Riemann problem for each two consecutive steps) and an 
operator splitting technique to deal with the non-homogeneous part of the hyperbolic operator, accounting not only for terms 
arising from the problem spherical geometry but also for the rate of production or destruction of the pollutant. 
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1. Introduction  
 

This work employs a preliminary hyperbolic model to describe transport phenomena in an environment 
representing the atmosphere containing a pollutant. The atmosphere is modeled as an ideal polytropic gas and the 
pollutant is transported radially. The resulting mathematical representation of this phenomenon consists of a nonlinear 
hyperbolic system of three partial differential equations representing mass and momentum conservation for the air-
pollutant mixture and the pollutant mass balance – in which a term representing the rate of pollutant production or 
destruction due to chemical reactions is considered. 

The nature of this mathematical problem does not allow, in general, classical solutions, in which the differential 
equations are verified at every spatial point, thus requiring an enlargement of the admissible solutions space, in order to 
allow for the presence of discontinuities satisfying a certain solution criterion – given by the entropy condition, besides 
satisfying a weak formulation of the conservation equations.  

This system hyperbolic feature suggests its approximation by means of a numerical method specially designed to 
deal with discontinuous problems. Its simulation is performed by following a systematic procedure consisting of three 
distinct steps – namely the construction of a Glimm’s scheme for time evolution with arbitrary initial condition, the 
complete generalized solution of the associated Riemann problem (since Glimm's scheme implementation requires, for 
every time step, the solution of a Riemann problem for each two consecutive steps) and an operator splitting into a 
hyperbolic part and an ordinary one.  
Glimm’s scheme is a numerical methodology to treat discontinuous problems, preserving the shock waves magnitude 
and position. Although its applicability is restricted to one-dimensional problems, this methodology exhibits features 
such as low storage costs and low computational effort, when compared to other numerical procedures to approximate 
nonlinear problems. The operator splitting technique is a simple and effective tool that consists, essentially, in treating a 
simultaneous problem as a sequential one. A decomposition in two parts of the operator defined in the hyperbolic 
system is performed so that the merely hyperbolic part of the operator – namely the homogeneous associated problem – 
is split away from its purely time evolutionary one.  

 
2. Mechanical model  

 
The transport of a pollutant in the air is described by considering the mass and linear momentum conservation for 

the air-pollutant mixture and the mass balance for the pollutant along with some simplifying assumptions. First the 
mass transfer is supposed to be caused by an advection-diffusion process of the pollutant – from now on denoted as A 
constituent, in the air, which is assumed as an ideal gas (all viscosity effects being neglected). The most important 
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simplifying assumption is to suppose the presence of a sufficiently small quantity of the constituent A in the mixture – 
at any time instant, so that the mass and linear momentum balance equations for the mixture can be approximated by 
mass and linear momentum balances for the air. This simplifying assumption allows to define ρ  as the air mass 
density, v  as its velocity, and p  and g  as the pressure and specific body force acting on the air.  
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The concentration of the constituent A in the mixture, Aω , is defined as the mass fraction of this constituent in the 

mixture, being expressed by the following equation /A Aω ρ ρ≡ . Besides, D  represents the diffusion coefficient of the 
constituent A in the mixture and Ar  the rate of production of the constituent A. At this point it is important to state 
additional simplifying assumptions to be considered in the present work. First, the pressure is considered as being a 
function of the mass density ρ  only, ( )ˆp p ρ=  its derivative with respect to ρ  being given by 'p  and satisfying 

( )' 0p ρ > . Also, considering a one-dimensional radial flow, the velocity field may be reduced to a single component 
on the flow direction rv=v e . Besides, gravitational effects will be omitted – a reasonable hypothesis for a radial flow 
and, finally, diffusion may be neglected, when compared to advection – this latter assumption being expressed by 
letting the diffusion coefficient 0D =  and being an admissible one for an isotropic explosion. So, the mechanical 
model stated in equation (1) is reduced to: 
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It is important to keep in mind that, in the particular problem addressed in this work, a decay in the concentration of 

the constituent A in the mixture (the pollutant) is taken into account in the term Ar . In equation (2) a constitutive 
relation to describe the rate of pollutant production – accounting for generation or destruction of pollutant, which may 
be caused by chemical reactions – is assumed as A Ar αω= − , where α  is a constant. This particular constitutive 
equation gives rise to a decay in the pollutant concentration along the time. 

System (2) may be rewritten by considering  ,     ,      AF G v Hρ ρ ρω≡ ≡ ≡  as 
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It is worth mentioning that in order to solve the above stated problem; initial data for the mass density, the velocity 

and the pollutant concentration are required. Eventually boundary conditions may also be employed in the solution. 
 
 
3. Numerical procedure 
 

In this section a scheme, developed to simulate nonlinear hyperbolic problems, is employed to obtain numerical 
approximations for the nonlinear system of partial differential equations described in equations (3). Two main 
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ingredients have been used to achieve this goal: an operator splitting technique together with the Glimm's scheme, 
successfully employed in the simulation of other nonlinear hyperbolic problems. The procedure consists in a 
decomposition of the operator in such a way that its merely hyperbolic part is split away from its purely time 
evolutionary one. Glimm’s method, specifically developed to deal with hyperbolic non-linear problems, consists in 
marching from a time n to a time n+1 through the solution of the associated Riemann problem for each two consecutive 
time steps. It is based on a theory whose mathematical formulation has a solid thermodynamic basis, which could be 
expressed by the entropy condition (Smoller, 1983). A wide range of non-linear hyperbolic problems have already been 
simulated by combining Glimm's scheme and an operator splitting technique among which are the wave propagation in 
gas pipelines, shock propagation in gas dynamics problems and wave propagation in a damageable elasto-viscoplastic 
pipe (see (Freitas Rachid et al, 1994) and references therein). Other relevant examples that could be quoted are the 
response of non-linear elastic rods (Saldanha da Gama, 1990) and the isothermal and non-isothermal flow of either ideal 
or Newtonian fluids through unsaturated porous media – covering most one-dimensional cases of interest (see (Martins-
Costa et al., 2001) and references therein). It is remarkable that the problems addressed in these works, due to their 
hyperbolic nature, do not require boundary conditions. They are essentially initial value problems (John, 1982). 

Glimm’s method, which deals with the homogeneous part of the hyperbolic operator represented in equation (3), 
employs the solution of the associated Riemann problem to march from a time n to a time n+1. Before using Glimm’s 
scheme for solving equations (3) with appropriated initial data, the solution of the associated Riemann problem must be 
known. In short, Glimm’s method allows building a solution for an initial value problem – namely nonlinear hyperbolic 
systems subjected to arbitrary initial data, through the solution of a certain number of associated Riemann problems. 
The arbitrary initial condition given by a function of the position r is approximated by piecewise constant functions, 
known as step functions – with equal width steps. In the sequence a Riemann problem – an initial value problem whose 
initial condition must be a step function, is to be solved for each two consecutive steps [MAR, 03]. The main idea 
behind the method is to appropriately gather the solution of as many Riemann problems as desired to successively 
march from time nt t=  to time 1n nt t t+ = + ∆ .  

The first step consists in obtaining an initial approximation for ( ), ,F G H  by advancing t∆  in time through the 

homogeneous (merely hyperbolic) part of the operator via Glimm’s method, using the values of ( ), ,F G H  at time 

nt t=  as initial data. The numerical approximation for the solution at time nt t=  is then obtained by advancing in time 
with the same time step t∆  through the purely time evolutionary system. This procedure is repeated until reaching a 
specified simulation time. 

The numerical procedure employed to advance from the time nt t= to 1nt t +=  may be defined as: 
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in which ( )ˆ ,nF F r t= , ( )ˆ ,nG G r t=  and ( )ˆ ,nH H r t= . 
 
 
3.1. Operator splitting technique 

 
The fist step to approximate the fields F , G  and H  at the time 1nt t +=  in the non-homogeneous problem 

described in equation (4) is to employ an operator splitting technique, described in details by [MAR, 01]. It consists of a 
decomposition of the operator defined in equation (4) so that its merely hyperbolic part – namely the homogeneous 
associated system, is split away from its purely time evolutionary one – an ordinary system. This technique gives rise to 
an initial approximation, obtained by advancing t∆  in time through the equations representing the homogeneous 
problem, by employing Glimm's method.  

Once this approximation has been evaluated, the numerical approximation for the solution ( ), ,F G H  at time 1nt +  is 
finally reached by advancing in time to solve the following time evolutionary problem, with the same step 1n nt t t+∆ = −  
through equations: 
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as follows: 
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3.2. Glimm’s scheme 

 
The fields ( )1nF r+ , ( )1nG r+  and ( )1nH r+  used as initial data in (5) are obtained by advancing t∆  in time via 

Glimm's method through the following homogeneous problem: 
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In other words, ( )1nF r+ , ( )1nG r+  and ( )1nH r+  are the solutions of (7) evaluated at the time 1nt t += . The main idea 

behind Glimm's scheme (Smoller, 1983) is to appropriately gather the solution of as many Riemann problems as desired 
to successively march from time nt t=  to 1nt t += . Glimm's scheme, specifically developed to deal with discontinuous 
problems, preserves the shock waves magnitude and position, within an uncertainty of r∆  (width of each step). Such 
features are not found in the usual numerical procedures (e.g. finite elements and finite differences). Besides, Glimm’s 
method presents a clear advantage of saving computer storage memory, when compared to other methodologies such as 
a finite element method associated with a shock capture procedure, however its limitation to one-dimensional problems 
is an important shortcoming. In order to employ this scheme a piecewise constant function is used to approximate the 
initial data, as follows: 
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in which nθ  is a number randomly chosen in the open interval ( )1/ 2 ,  1/ 2− +  and r∆  is the width of each step 
( 1i ir r r+∆ = − ). 

The above approximations for the initial data give rise, for each two consecutive steps, to the following Riemann 
problem – whose detailed solution is presented in (Martins-Costa and Saldanha da Gama, 2003): 
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Denoting by 
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R
nH  the generalized solution of the Riemann problem (9), the approximation for the 

solution of (7) at the time 1nt +  is given as follows: 
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Figure1. Gas density, velocity and pollutant concentration per unit volume variation with position – considering 0.01α =  
and a spherical shell with 1.00 and 2.00i er r= = . 
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In order to prevent interactions among nearby shocks of adjacent Riemann problems, the time step t∆ , and 
consequently, 1nt +  must be chosen in such a way that the Courant-Friedrich-Lewy (Smoller, 1977) condition is 
satisfied: 

 

1
max

2n n
rt t

λ+

∆
− ≤            (11) 

 
where 

max
λ  is the maximum (in absolute value) propagation speed, considering all the Riemann problems. 

At this point a further comment is worth mentioning: the Courant-Friedrich-Lewy condition, expressed in 
equation (11), although sufficient to assure an adequate treatment of the homogeneous associated problem with absence 
of interactions among shocks of adjacent Riemann problems, is not sufficient to guarantee the physical validity of the 
employed operator splitting technique. In the particular problem treated in this work, in which spherical waves are 
considered, the ratio between the time step t∆  and the considered value of the radius r must be sufficiently small. In 
other words, a value ten times smaller than the one computed in equation (11) is employed for the time step t∆ , in 
order to avoid convergence problems. 
 

 

 
 

Figure 2. Gas density, velocity and pollutant concentration per unit volume variation with position – considering 10α =  
and a spherical shell with 1.00 and 2.00i er r= = . 
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4. Numerical results and discussion 
 

Figures 1 to 4 show – in all depicted sketches, the evolution of gas density ρ ρ , velocity v  and pollutant 
concentration per unit volume Aρω  along with radial position for five selected time instants. In all the considered cases, 
the initial data, presented in the three graphs shown in the first line, consists of distinct step functions for gas density ρ  
(with L Rρ ρ> ) and pollutant concentration in the mixture Aω  (with A AL Rω ω< ), resulting in a pollutant concentration 
per unit volume given by A AL Rρω ρω< . 

 
 

 
 

Figure 3. Gas density, velocity and pollutant concentration per unit volume variation with position –considering 0.01α =  
and a spherical shell with 0.01 and 1.01i er r= = . 

 
The velocity v  initial value is given by a linear increasing function. All these results have been obtained by 

employing Glimm’s difference scheme combined with an operator splitting technique to account for the non-
homogeneous portion of the hyperbolic operator and have been achieved with 600 steps.  

All results have been obtained by considering a spherical shell unitary thickness. The influence of the behavior of 
ρ , v  Aρω  may be observed by comparing figures 1 (in which the internal and external radii have been made equal to 

1.00 and 2.00i er r= = ) and 3 (with 0.01 and 1.01i er r= = ).  
In fact, as the spherical shell curvature is increased the effect of the shocks becomes less visible. In other words, a 

shock dissipation effect could be associated with the curvature increase. 
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Figure 4. Gas density, velocity and pollutant concentration per unit volume variation with position –considering 10α =  
and a spherical shell with 0.01 and 1.01i er r= = . 

 
The influence of the α  coefficient may be observed by comparing figure 1 ( 0.01α = ) with figure 2 ( 10α = ) and 

figures 3 ( 0.01α = ) and 4 ( 10α = ). These results show that the term Ar  plays the role of a pollutant sink – giving rise 

to decay in the pollutant concentration Aω  along the time.  
 
5. Final remarks 
 

Glimm’s method, besides preserving shock waves magnitude and position, is a convenient tool for solving one-
dimensional nonlinear problems, exhibiting features such as low storage costs and low computational effort, when 
compared to other numerical procedures to approximate nonlinear problems. Besides, combined with an operator 
splitting technique this numerical methodology allows the accurate approximation of a nonlinear system of non-
homogeneous partial differential equations representing mathematically the transport of a pollutant in the atmosphere in 
a spherical geometry and accounting for a pollutant generation term (acting in the sense of pollutant destruction) which 
simulates chemical reactions, causing a damping effect in Aω  variation. 
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